

Date: 21-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions - (10 x 1 = 10)

1. Answer the following

- a) Define Subgraph.
- b) Describe Unicursal graph.
- c) State the eccentricity of a vertex in the graph.
- d) Define Cut-set.
- e) Describe Region.

2. MCQ

- a) The number of vertices of odd degree in a graph is
 - (i) Prime
 - (ii) Composite
 - (iii) Odd
 - (iv) Even
- b) An Euler graph G is arbitrarily traceable from vertex v in G if and only if every _____ in G contains v .
 - (i) Path
 - (ii) Walk
 - (iii) Circuit
 - (iv) Subgraph
- c) Every connected graph has _____ spanning tree.
 - (i) At most one
 - (ii) At least one
 - (iii) Exactly one
 - (iv) Exactly two
- d) Every cut-set in a connected graph G must contain at least one _____ of every spanning tree of G .
 - (i) branch
 - (ii) chord
 - (iii) edge
 - (iv) vertex
- e) In any simple connected planar graph with f regions, n vertices and e edges ($e > 2$), which of the following inequality holds.
 - (i) $e \leq 3(n-2)$
 - (ii) $e \geq 3(n-2)$
 - (iii) $e < 3(n-2)$
 - (iv) $e > 3(n-2)$

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. Fill in the blanks

- a) An open walk in which no vertex appears more than once is called _____.
- b) A simple graph in which there exists an edge between every pair of vertices is called a _____.
- c) The number of branches in any spanning tree of the graph G is known as _____.
- d) The vertex connectivity of any graph G can never exceed the _____ of G .
- e) The spherical embedding of every planar 3-connected graph is _____.

4. True or False

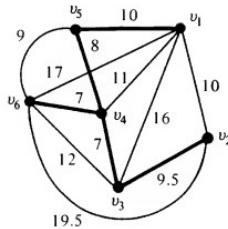
- a) If two graphs have same number of vertices and edges then they are called isomorphic graphs.
- b) A sufficient condition for a simple graph G with n vertices to have a Hamiltonian circuit is that the degree of every vertex in G be at least $n/2$.
- c) If there is a real number associated with each edge of the graph G , then the graph is known as weighted graph.

d)	A connected graph is said to be separable if its vertex connectivity is two.
e)	Any simple planar graph can be embedded in a plane such that every edge is drawn as a straight line segment.

SECTION B - K3 (CO2)

Answer any TWO of the following

(2 x 10 = 20)


5. Nine members of a new club meet each day for lunch at a round table. They decide to sit such that every member has different neighbours at each lunch. How many days can this arrangement last? Write all the arrangements.
6. Prove that a simple graph with n vertices and k components can have at most $(n-k)(n-k+1)/2$ edges.
7. What is Konigsberg bridge problem? Explain in detail how Euler solved it using a graph.
8. List all the operations performed on the graph and explain any three of the operations with suitable graphs.

SECTION C – K4 (CO3)

Answer any TWO of the following

(2 x 10 = 20)

9. Prove that a spanning tree T of a given weighted connected graph G is a shortest spanning tree of G if and only if there exists no other spanning tree of G at a distance of one from T whose weight is smaller than that of T .
10. Prove that with respect to a given spanning tree T , a chord ci for some i , that determines a fundamental circuit Γ occurs in every fundamental cut-set associated with the branches in Γ and in no other.
11. Prove that a connected planar graph with n vertices and e edges has $e-n+2$ regions.
12. Using Prim's algorithm, estimate the shortest spanning tree of the graph given below.

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 20 = 20)

13. (a) Prove that a given connected graph G is an Euler graph if and only if all vertices of G are of even degree.
(b) In a complete graph with n vertices, prove that there are $(n - 1)/2$ edge-disjoint Hamiltonian circuits, if n is an odd number greater than 3.
(12+8)
14. List the properties of trees and prove any four of them.

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. Construct a proof to defend the statement “the ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.”
16. Defend Kuratowski's first and second graphs are non-planar.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$